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1. Background



LLMs on reasoning tasks using CoT
• LLMs are powerful in many reasoning tasks, especially with chain-of-thought (CoT)

Figure credit to [2]

[1] Wei, Jason, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V. Le, and Denny Zhou. "Chain-of-thought prompting elicits reasoning in large language 
models." Advances in neural information processing systems 35 (2022): 24824-24837.
[2] Zhou, Yang, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. "GSM-Infinite: How Do Your LLMs Behave over Infinitely Increasing Context Length and Reasoning 
Complexity?." arXiv preprint arXiv:2502.05252 (2025).

Figure credit to [1]

• LLMs still struggle with more complex reasoning tasks (e.g., longer reasoning steps)

• How to expand existing CoT methods to solve more complex problems?



Existing methods (1)
• Pause tokens[1], filler tokens [2]

[1] Goyal, Sachin, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh Nagarajan. "Think before you speak: Training language models with pause tokens."arXiv preprint 
arXiv:2310.02226 (2023).
[2] Pfau, Jacob, William Merrill, and Samuel R. Bowman. "Let's think dot by dot: Hidden computation in transformer language model s." arXiv preprint arXiv:2404.15758 (2024).

Figure credit to [1]



Existing methods (2)
• Implicit CoT[1] (gradually removing intermediate steps)

[1] Deng, Yuntian, Yejin Choi, and Stuart Shieber. "From explicit cot to implicit cot: Learning to internalize cot step by step." arXiv preprint arXiv:2405.14838 (2024).

Figure credit to [1]



Existing methods (3)
• Latent space[1] (use discrete latent tokens as first several steps)

[1] Su, DiJia, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. "Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning." arXiv preprint 
arXiv:2502.03275 (2025).

Figure credit to [1]



Chain of continuous thought

• Continuous CoT: directly uses the hidden state as the next input
• Outperforms discrete CoTs in various reasoning tasks

• Especially problems with high branching factors/requires searching

• Lacks theoretical understanding of its power and mechanism
[1] Hao, Shibo, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. "Training large language models to reason in a continuous latent space." arXiv preprint arXiv:2412.06769 (2024).

Figure credit to [1]



Main results

• Construct a 2-layer transformer with Continuous CoT that solves
directed graph reachability using 𝑂(𝑛) steps (𝑛: # of vertices)
• The best known result for constant-depth transformers with discrete CoT

requires 𝑂(𝑛2) steps[1]

• Insights: Continuous thoughts maintain a “superposition” of
explored vertices, performing a parallel BFS

• Empirical study is aligned with theoretical construction
• Superposition representation emerges during training (no supervision)

[1] Merrill, William, and Ashish Sabharwal. "The expressive power of transformers with chain of thought." arXiv preprint arXiv:2310.07923 (2023).



2. Theoretical Results



Graph reachability

Step 1: 𝑣1 or 𝑣2 ?
(hard to decide which branch)

Chain of discrete thought

Step 1: 𝑣1 and 𝑣2 !
(explore both branches

simultaneously)

Chain of continuous thought

• Graph reachability: Given a directed graph 𝒢 = (𝒱, ℰ), decide whether a node 𝑠 can reach 𝑡
• Many real-world reasoning problem can be abstracted as a graph (e.g., knowledge graph)
• Many theoretical problems can be reduced to it (e.g., Turing machine halting problem)
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Preliminaries
• Voc = [𝑉]: a vocabulary of size 𝑉

• For any token 𝑣 ∈ Voc, it has an embedding 𝑢𝑣 ∈ ℝ𝑑

Discrete CoT

…

Transformer

𝑣1 𝑣3 𝑣𝑡𝑣2

sample:

Continuous CoT

…

Transformer

𝑣1 𝑣3 𝑣𝑡𝑣2 latent

𝑣𝑡+1

𝑣𝑡+1



Transformers

Adding positional encodings

multi-head attention layers

MLP / FF layers & layer normalization

Transformer Multi-head attention

MLP + layer normalization

Positional encoding

×  𝐿



Attentions and MLPs

Multi-head attention

MLP



Embedding space

content positional encodingbuffer 2buffer 1

𝑑 = 3𝑑TE + 𝑑PE

𝑑TE 𝑑TE𝑑TE 𝑑PE

• We use content(𝑢) to represent the first 𝑑TE entries for a 𝑑-dim vector 𝑢
• Define buffer1(𝑢) , buffer2(𝑢) , and pos(𝑢) similarly
• Use ෤𝑢 = content(𝑢) and ത𝑢 = pos(𝑢) for convenience



Token embeddings and positional encodings

• For token embedding 𝑢𝑣, only the content space are non-zero
• Define the (reduced) embedding matrix ෩𝑈 = ෤𝑢1, ෤𝑢2, … , ෤𝑢𝑉 ∈ ℝ𝑑TE×𝑉

• Assume ෩𝑈T ෩𝑈 = I (i.e., token embeddings are orthonormal)

• For positional encoding Ԧ𝑝𝑖, only the position space are non-zero
• We use sinusoidal positional encodings
• For any position 𝑖 ≥ 1 and 𝑗 ∈ 𝑑PE/2

• ҧ𝑝𝑖,2𝑗−1 = cos(𝑖 ⋅ 𝜔𝑗), ҧ𝑝𝑖,2𝑗 = sin(𝑖 ⋅ 𝜔𝑗)

• where 𝜔 = 𝑀−2/𝑑PE (in practice, 𝑀 = 104 for example)

෥𝒖 000

ഥ𝒑0 00

𝜔
𝜔

ҧ𝑝1ҧ𝑝2



Prompt format

𝑠1 𝑡1 <e> 𝑠2 𝑡2 …<e> 𝑠𝑚 𝑡𝑚 <e>

source node target node

directed edge special edge token

Given two candidate destination nodes, decide which one can be reached

<s>

Description of the Graph



Prompt format

<s> <Q> 𝑐1 𝑐2 <R> 𝑠

question token reasoning token

candidate targets start node

Given two candidate destination nodes, decide which one can be reached

Graph Description

Description of the task



Prompt format

<s>

Given two candidate destination nodes, decide which one can be reached

Task DescriptionGraph Description

Decoding

𝑣1 𝑣2 target

Discrete CoT

Continuous CoT

latent latent target

𝑣3 <A>

<A>



Main theorem

For 𝑛-vertex directed graphs, a 2-layer transformer with
continuous CoT can solve reachability using 𝑂(𝑛) decoding

steps with 𝑂(𝑛) embedding dimensions.

Theorem (informal)

Secret Sauce: Superposition of the embeddings! 



How does a single attn-MLP block work?

ℎ = ෍

𝑣∈Voc

𝜆𝑣𝑢𝑣

MLP as a filter

ℎ′ ∝ ෍

𝑣∈Voc

𝕀{𝜆𝑣 ≥ 𝜀}𝑢𝑣

Eliminate noise
ℎ′ = 𝑊2𝜎 𝑊1ℎ

= 𝑈𝜎(𝑈𝑇ℎ)

𝑥1 𝑥3 … 𝑥𝑡−1 𝑥𝑡𝑥2

𝑈 = [𝑢1, 𝑢2, … , 𝑢𝑉] : the embedding matrix

The role of each MLP layer:
• 𝑊1 = 𝑈𝑇: change to standard basis;
• 𝜎 ⋅ = 𝕀 ⋅ ≥ 𝜀 : coordinate-wise filter;
• 𝑊2 = 𝑈: change the basis back

Attend to several previous tokens

Copy contents to buffer spaces

content

buffer

simplified
embedding
space

𝑥2 𝑥𝑡−1“+” Attention as an aggregator:
• this is a general component
• can have multiple buffers
• can move contents to different buffers



First-layer attention

<s> 𝑠𝑖 𝑡𝑖 <e> … <Q> 𝑐1 𝑐2 <R> 𝑟 [𝑡1] … [𝑡𝐶] <A>

𝑝3𝑖+1𝑝3𝑖−1 𝑝3𝑖 𝑝3𝑚+5

𝑡𝑖

𝑠𝑖

𝑝𝑇𝑝𝑇−1

…

𝑝3𝑚+3 𝑝3𝑚+4 …… …

copy

attend

[𝑡𝐶]

content

positional
encoding

buffer 2

buffer 1

embedding
space

𝑐1, 𝑐2

[𝑡𝑐]

<A>

Continuous thought at step c

Special answer token
MLP layers: removing low-attended embeddings



Second-layer attention (thought generation)

<s> <e> … 𝑟 [𝑡𝑐]…

𝑡𝑖

𝑠𝑖

…

large attention
if 𝑠𝑗 ∈ 𝒱𝑐

content

buffer 2

buffer 1

embedding
space

<e>

𝑡𝑗

𝑠𝑗

… 𝑡𝑐 =
1

𝒱𝑐

෍

𝑣∈𝒱𝑐

𝑢𝑣

Superposition of all
nodes that can be
reached within 𝑐 stepsadd if large attention

small attention if 𝑠𝑖 ∉ 𝒱𝑐

One-step expansion of 𝒱𝑐

𝒱𝑐 : set of all reachable 
nodes within 𝑐 steps



Continuous CoT: Decoding as parallel BFS

s

t
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t
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𝑡1 =
1

𝒱1(𝑠)
෍

𝑣∈𝒱1

𝑢𝑣

Frontier nodes

𝑡2 =
1

𝒱2(𝑠)
෍
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𝑢𝑣



Second-layer attention (final prediction)

<s> <e> … <Q> 𝑐1 𝑐2 <R> 𝑟 [𝑡1] … [𝑡𝐶] <A>…

add
[𝑡𝐶]

content

buffer 2

buffer 1

embedding
space

𝑐1, 𝑐2

“Measure” [𝑡𝐶] using 𝑐1 and 𝑐2

𝑡𝐶 =
1

𝒱𝐶

෍

𝑣∈𝒱𝐶

𝑢𝑣

Reachable set from 
the starting point

The target 𝑐⋆ that overlaps with reachable set will be picked and returned



Construction of the first-layer attention

• How do transformers implement copy?
• Naïve methods: hard-coding many position pairs

• e.g., pos. 5 attends to pos. 4, pos. 8 attends to pos. 6
• Drawback: not flexible, vulnerable even to a one-position shift

• A possible solution: using relative positions
• E.g., pos. 𝑖 attends to pos. (𝑖 − ℓ) for some fixed ℓ

• Drawback: not every position needs to look ℓ positions back
• We propose a more flexible building block: attention chooser

• Fix a special token <x>, and a positive integer ℓ

• If the token at the current position 𝑖 is <x>, then attends to position 𝑖 − ℓ 

• Otherwise attends to <s> (attention sink)



Properties of sinusoidal positional encodings

• Proposition 1: There exists 𝑅(ℓ) ∈ ℝ𝑑PE×𝑑PE, s.t., ҧ𝑝𝑖+ℓ = 𝑅(ℓ) ҧ𝑝𝑖, ∀𝑖

•
cos(ℓ ⋅ 𝜔𝑗) −sin(ℓ ⋅ 𝜔𝑗)

sin(ℓ ⋅ 𝜔𝑗) cos(ℓ ⋅ 𝜔𝑗)

cos(𝑖 ⋅ 𝜔𝑗)

sin(𝑖 ⋅ 𝜔𝑗)
=

cos((𝑖 + ℓ) ⋅ 𝜔𝑗)

sin((𝑖 + ℓ) ⋅ 𝜔𝑗)

• Proposition 2: There exists 𝜀 > 0, s.t., ⟨ ҧ𝑝𝑖 , ҧ𝑝𝑗⟩ ≤
𝑑PE

2
− 𝜀 for 𝑖 ≠ 𝑗

• ҧ𝑝𝑖 , ҧ𝑝𝑗 = σ𝑘=1
𝑑PE 𝑝𝑖,𝑘𝑝𝑗,𝑘

= σ𝑘=1
𝑑PE/2

cos 𝑖 ⋅ 𝜔𝑘 cos 𝑗 ⋅ 𝜔𝑘 + cos(𝑖 ⋅ 𝜔𝑘)cos(𝑗 ⋅ 𝜔𝑘)

= σ𝑘=1
𝑑PE/2

cos (𝑖 − 𝑗) ⋅ 𝜔𝑘

𝑅(ℓ)

ҧ𝑝𝑖ҧ𝑝𝑖+ℓ

ҧ𝑝𝑖ҧ𝑝𝑗



Attention chooser

• A single attention head given (<x>, ℓ) that implements:
• If the token at the current position 𝑖 is <x>, then attends to position 𝑖 − ℓ

• Otherwise attends to <s>



Attention chooser (continued)

• A single attention head given (<x>, ℓ) that implements:
• If the token at the current position 𝑖 is <x>, then attends to position 𝑖 − ℓ

• Otherwise attends to <s>

• If ℎ𝑖 = 𝑢<x>, then the second term is zero
• Determined only by the first term, maximized at 𝑗 = 𝑖 − ℓ

• Otherwise, determined by the second term for a large 𝜉
• Maximized at 𝑗 = 1



Implementing the first-layer attention

• Attention chooser is a general building block

• Five heads: (<e>, 1), (<e>, 2), (<R>, 1), (<R>, 2), (<A>, 1)
• Value matrix reads, output matrix writes

<s> 𝑠𝑖 𝑡𝑖 <e> … <Q> 𝑐1 𝑐2 <R> 𝑟 [𝑡1] … [𝑡𝐶] <A>

𝑝3𝑖+1𝑝3𝑖−1 𝑝3𝑖 𝑝3𝑚+5

𝑡𝑖

𝑠𝑖

𝑝𝑇𝑝𝑇−1

…

𝑝3𝑚+3 𝑝3𝑚+4 …… …

[𝑡𝐶]

𝑐1, 𝑐2



Implementing the second-layer attention

• Only requires one head

<s> <e> … 𝑟 [𝑡𝑐]…

𝑡𝑖

𝑠𝑖

…

large attention
if 𝑠𝑗 ∈ 𝒱𝑐

<e>

𝑡𝑗

𝑠𝑗

…

small attention if 𝑠𝑖 ∉ 𝒱𝑐

… <R> 𝑟 [𝑡1] … [𝑡𝐶] <A>

𝑐1, 𝑐2



3. Experiments



Dataset: ProsQA

[1] Hao, Shibo, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. "Training large language models to reason in a continuous latent space." arXiv preprint 
arXiv:2412.06769 (2024).

Figure credit to [1]



Dataset: ProsQA (symbolic version)
• We use a symbolic version of ProsQA

• We train models from scratch since we change # of layers
• Easier to observe and align with our theory

• Dataset statistics

<s> 𝑠1 𝑡1 <e> 𝑠2 𝑡2 …<e> 𝑠𝑚 𝑡𝑚 <e> <Q> 𝑐1 𝑐2 <R> 𝑟



Training Methods

Figure credit to [1]

[1] Hao, Shibo, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. "Training large language models to reason in a continuous latent space." arXiv preprint 
arXiv:2412.06769 (2024).

• In our experiments, we only calculate the loss at the position of <eot>



Comparison of continuous and discrete CoT

• Dataset: a subset of ProsQA[1] , symbolic sequence, 3-4 steps
• Model: GPT2-style decoder
• Training: multi-stage training, stage i predicts i-th node in the

optimal path using previous thoughts

• Overall results: 2-layer transformer with
continuous CoT (Coconut) beats 12-layer
transformer with discrete CoT (CoT*)

[1] Hao, Shibo, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. "Training large language models to reason in a continuous latent space." arXiv preprint arXiv:2412.06769 (2024).



Layer 1 
Attention Patterns 



Layer 1 
Attention Patterns 



Layer 1 
Attention Patterns 



Visualization (Layer 2 attention)

• For step c:
• Reachable node (reachable from start node within 𝑐-th steps)

• Frontier node (exactly 𝑐-th steps)
• Optimal node (on the shortest path from the start node to the destination node)

• Non-reachable node

• The attention from the current thought to each edge (group)

𝑡𝑐 =
1

𝒱𝑐

෍

𝑣∈𝒱𝑐

𝑢𝑣



Visualization (superposition)
• Inner products of the current thought and each node embedding

• Superposition emerges during training without explicit supervision
• Note that during training, the target token is always at the optimal path

• Superposition prefers to the optimal nodes
• Theoretical construction: uniform weights in superposition
• Experimental results: larger weights for the optimal node
• Models might have heuristics on which branch is more promising

𝑡𝑐 =
1

𝒱𝑐

෍

𝑣∈𝒱𝑐

𝑢𝑣



4. Conclusions



Discussions

• Continuous thoughts can be powerful but hard to control
• E.g., superposition states can be a subset of tokens (with different

weights)
• It can emerge even if the training data only contain single discrete traces

• Requires a deeper understanding if we want to use it reliably
• Mechanism for more general tasks
• How superposition emerges during training and how to control it



Thanks!
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