Reasoning by Superposition: A Theoretical Perspective on Chain of Continuous Thought

Hanlin Zhu¹

Joint work with Shibo Hao², Zhiting Hu², Jiantao Jiao¹, Stuart Russell ¹, Yuandong Tian ³

1. UC Berkeley 2. UCSD 3. Meta AI

Contents

• 1. Background

• 2. Theoretical Results

• 3. Experiments

• 4. Conclusions

1. Background

LLMs on reasoning tasks using CoT

• LLMs are powerful in many reasoning tasks, especially with chain-of-thought (CoT)

- LLMs still struggle with more complex reasoning tasks (e.g., longer reasoning steps)
- How to expand existing CoT methods to solve more complex problems?

[1] Wei, Jason, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V. Le, and Denny Zhou. "Chain-of-thought prompting elicits reasoning in large language models." *Advances in neural information processing systems* 35 (2022): 24824-24837.

[2] Zhou, Yang, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. "GSM-Infinite: How Do Your LLMs Behave over Infinitely Increasing Context Length and Reasoning Complexity?." arXiv preprint arXiv:2502.05252 (2025).

Existing methods (1)

• Pause tokens^[1], filler tokens^[2]

Figure credit to [1]

^[1] Goyal, Sachin, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh Nagarajan. "Think before you speak: Training language models with pause tokens." arXiv preprint arXiv:2310.02226 (2023).

^[2] Pfau, Jacob, William Merrill, and Samuel R. Bowman. "Let's think dot by dot: Hidden computation in transformer language models." arXiv preprint arXiv:2404.15758 (2024).

Existing methods (2)

• Implicit CoT^[1] (gradually removing intermediate steps)

[1] Deng, Yuntian, Yejin Choi, and Stuart Shieber. "From explicit cot to implicit cot: Learning to internalize cot step by step." arXiv preprint arXiv:2405.14838 (2024).

Existing methods (3)

Latent space^[1] (use discrete latent tokens as first several steps)

[1] Su, DiJia, **Hanlin Zhu**, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinqing Zheng. "Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning." arXiv preprint arXiv:2502.03275 (2025).

Chain of continuous thought

Figure credit to [1]

- Continuous CoT: directly uses the hidden state as the next input
- Outperforms discrete CoTs in various reasoning tasks
 - Especially problems with high branching factors/requires searching
- Lacks theoretical understanding of its power and mechanism

Main results

- Construct a 2-layer transformer with Continuous CoT that solves directed graph reachability using O(n) steps (n: # of vertices)
 - The best known result for constant-depth transformers with discrete CoT requires $O(n^2)$ steps^[1]
- **Insights:** Continuous thoughts maintain a "superposition" of explored vertices, performing a parallel BFS
- Empirical study is aligned with theoretical construction
 - Superposition representation emerges during training (no supervision)

2. Theoretical Results

Graph reachability

- Graph reachability: Given a directed graph $G = (\mathcal{V}, \mathcal{E})$, decide whether a node s can reach t
 - Many real-world reasoning problem can be abstracted as a graph (e.g., knowledge graph)
 - Many theoretical problems can be reduced to it (e.g., Turing machine halting problem)

Preliminaries

- Voc = [V]: a vocabulary of size V
 - For any token $v \in \mathrm{Voc}$, it has an embedding $\vec{u}_v \in \mathbb{R}^d$

Discrete CoT

Continuous CoT

Transformers

Transformer

MLP + layer normalization

 $\times L$

Multi-head attention

Positional encoding

Attentions and MLPs

Multi-head attention

$$\mathbf{q}_i \leftarrow \mathbf{Q}\mathbf{h}_i, \quad \mathbf{k}_i \leftarrow \mathbf{K}\mathbf{h}_i, \quad \mathbf{v}_i \leftarrow \mathbf{V}\mathbf{h}_i, \quad \forall i \in [t]$$

$$s_i \leftarrow \mathsf{SoftMax}(\langle \mathbf{q}_i, \mathbf{k}_1 \rangle, \dots, \langle \mathbf{q}_i, \mathbf{k}_i \rangle), \quad \mathbf{h}_i^{\mathsf{Attn}} \leftarrow \mathbf{O} \sum_{j=1}^i s_{i,j} \mathbf{v}_j$$

MLP

$$\mathbf{h}_i^{\mathsf{MLP}} \leftarrow \mathbf{W}_{L_{\mathsf{MLP}}} \sigma_{L_{\mathsf{MLP}}-1} (\cdots \mathbf{W}_2 \sigma_1 (\mathbf{W}_1 \mathbf{h}_i) \cdots)$$

Embedding space

- We use $\operatorname{content}(\vec{u})$ to represent the first d_{TE} entries for a d-dim vector \vec{u}
 - Define $\operatorname{buffer}_1(\vec{u})$, $\operatorname{buffer}_2(\vec{u})$, and $\operatorname{pos}(\vec{u})$ similarly
 - Use $\tilde{u} = \operatorname{content}(\vec{u})$ and $\bar{u} = \operatorname{pos}(\vec{u})$ for convenience

Token embeddings and positional encodings

- For token embedding \vec{u}_v , only the content space are non-zero
 - Define the (reduced) embedding matrix $\tilde{U} = [\tilde{u}_1, \tilde{u}_2, ..., \tilde{u}_V] \in \mathbb{R}^{d_{\text{TE}} \times V}$
 - Assume $\widetilde{U}^{\mathrm{T}}\widetilde{U}=\mathrm{I}$ (i.e., token embeddings are orthonormal)

- ullet For positional encoding $ec{p}_i$, only the position space are non-zero
 - We use sinusoidal positional encodings
 - For any position $i \ge 1$ and $j \in [d_{PE}/2]$
 - $\bar{p}_{i,2j-1} = \cos(i \cdot \omega^j)$, $\bar{p}_{i,2j} = \sin(i \cdot \omega^j)$
 - where $\omega = M^{-2/d_{\rm PE}}$ (in practice, $M=10^4$ for example)

Prompt format

Given two candidate destination nodes, decide which one can be reached

Prompt format

Given two candidate destination nodes, decide which one can be reached

Prompt format

Given two candidate destination nodes, decide which one can be reached

Main theorem

Theorem (informal)

For n-vertex directed graphs, a **2-layer** transformer with continuous CoT can solve reachability using O(n) decoding steps with O(n) embedding dimensions.

Secret Sauce: Superposition of the embeddings!

How does a single attn-MLP block work?

Attention as an aggregator:

- this is a general component
- can have multiple buffers
- can move contents to different buffers

$$h = \sum_{v \in \text{Voc}} \lambda_v \vec{u}_v$$

$$h' = W_2 \sigma(W_1 h)$$

= $U \sigma(U^T h)$

$$h' \propto \sum_{v \in V \cap C} \mathbb{I}\{\lambda_v \geq \varepsilon\} \vec{u}_v$$

Eliminate noise

$$U = [\vec{u}_1, \vec{u}_2, ..., \vec{u}_V]$$
: the embedding matrix

The role of each MLP layer:

- $W_1 = U^T$: change to standard basis;
- $\sigma(\cdot) = \mathbb{I}\{\cdot \geq \varepsilon\}$: coordinate-wise filter;
- $W_2 = U$: change the basis back

First-layer attention

Special answer token

<A>

MLP layers: removing low-attended embeddings

Second-layer attention (thought generation)

Superposition of all nodes that can be reached within *c* steps

$$[t_c] = \frac{1}{\sqrt{|\mathcal{V}_c|}} \sum_{v \in \mathcal{V}_c} \vec{u}_v$$

 \mathcal{V}_c : set of all reachable nodes within c steps

Continuous CoT: Decoding as parallel BFS

Second-layer attention (final prediction)

"Measure" $[t_{\it C}]$ using c_1 and c_2

The target c^* that overlaps with **reachable set** will be picked and returned

Construction of the first-layer attention

- How do transformers implement copy?
 - Naïve methods: hard-coding many position pairs
 - e.g., pos. 5 attends to pos. 4, pos. 8 attends to pos. 6
 - Drawback: not flexible, vulnerable even to a one-position shift
 - A possible solution: using relative positions
 - E.g., pos. i attends to pos. $(i \ell)$ for some fixed ℓ
 - Drawback: not every position needs to look ℓ positions back
 - We propose a more flexible building block: attention chooser
 - Fix a special token <x>, and a positive integer ℓ
 - If the token at the current position i is <x>, then attends to position $i-\ell$
 - Otherwise attends to <s> (attention sink)

Properties of sinusoidal positional encodings

• Proposition 1: There exists $R^{(\ell)} \in \mathbb{R}^{d_{\text{PE}} \times d_{\text{PE}}}$, s.t., $\bar{p}_{i+\ell} = R^{(\ell)}\bar{p}_i$, $\forall i$

•
$$\begin{bmatrix} \cos(\ell \cdot \omega^j) & -\sin(\ell \cdot \omega^j) \\ \sin(\ell \cdot \omega^j) & \cos(\ell \cdot \omega^j) \end{bmatrix} \begin{bmatrix} \cos(i \cdot \omega^j) \\ \sin(i \cdot \omega^j) \end{bmatrix} = \begin{bmatrix} \cos((i + \ell) \cdot \omega^j) \\ \sin((i + \ell) \cdot \omega^j) \end{bmatrix}$$

• Proposition 2: There exists $\varepsilon > 0$, s.t., $\langle \bar{p}_i, \bar{p}_j \rangle \leq \frac{d_{\text{PE}}}{2} - \varepsilon$ for $i \neq j$

•
$$\langle \bar{p}_i, \bar{p}_j \rangle = \sum_{k=1}^{d_{\text{PE}}} p_{i,k} p_{j,k}$$

$$= \sum_{k=1}^{d_{\text{PE}}/2} \cos(i \cdot \omega^k) \cos(j \cdot \omega^k) + \cos(i \cdot \omega^k) \cos(j \cdot \omega^k)$$

$$= \sum_{k=1}^{d_{\text{PE}}/2} \cos((i-j) \cdot \omega^k)$$

Attention chooser

- A single attention head given ($\langle x \rangle$, ℓ) that implements:
 - If the token at the current position i is <x>, then attends to position $i \ell$
 - Otherwise attends to <s>

$$\mathbf{Q} = \begin{bmatrix} \mathbf{0}_{d_{\mathsf{PE}} \times d_{\mathsf{TE}}} & \mathbf{0}_{d_{\mathsf{PE}} \times 2d_{\mathsf{TE}}} & \mathbf{I}_{d_{\mathsf{PE}}} \\ \xi \bar{\mathbf{p}}_1 \otimes \tilde{\mathbf{u}}_{<\bar{\mathbf{x}}>} & \mathbf{0}_{d_{\mathsf{PE}} \times 2d_{\mathsf{TE}}} & \mathbf{0}_{d_{\mathsf{PE}} \times d_{\mathsf{PE}}} \end{bmatrix} \qquad \mathbf{K} = \begin{bmatrix} \mathbf{0}_{d_{\mathsf{PE}} \times 3d_{\mathsf{TE}}} & \eta \mathbf{R}^{(\ell)} \\ \mathbf{0}_{d_{\mathsf{PE}} \times 3d_{\mathsf{TE}}} & \eta \mathbf{I}_{d_{\mathsf{PE}}} \end{bmatrix}$$

$$\tilde{\mathbf{u}}_{<\bar{\mathbf{x}}>} = \sum_{v \in \mathsf{Voc} \setminus \{<\mathbf{x}>\}} \tilde{\mathbf{u}}_v \in \mathbb{R}^{d_{\mathsf{TE}}}$$

$$\mathbf{q}_i = \mathbf{Q}(\mathbf{h}_i + \mathbf{p}_i) = \begin{bmatrix} \bar{\mathbf{p}}_i \\ \xi \langle \tilde{\mathbf{u}}_{<\bar{\mathbf{x}}>}, \tilde{\mathbf{h}}_i \rangle \bar{\mathbf{p}}_1 \end{bmatrix} \qquad \mathbf{k}_i = \mathbf{K}(\mathbf{h}_i + \mathbf{p}_i) = \begin{bmatrix} \eta \mathbf{R}^{(\ell)} \bar{\mathbf{p}}_i \\ \eta \bar{\mathbf{p}}_i \end{bmatrix} = \begin{bmatrix} \eta \bar{\mathbf{p}}_{i+\ell} \\ \eta \bar{\mathbf{p}}_i \end{bmatrix}$$

$$\langle \mathbf{q}_i, \mathbf{k}_j \rangle = \eta \left(\langle \bar{\mathbf{p}}_i, \bar{\mathbf{p}}_{j+\ell} \rangle + \xi \langle \tilde{\mathbf{u}}_{<\bar{\mathbf{x}}>}, \tilde{\mathbf{h}}_i \rangle \langle \bar{\mathbf{p}}_1, \bar{\mathbf{p}}_j \rangle \right)$$

Attention chooser (continued)

- A single attention head given ($\langle x \rangle$, ℓ) that implements:
 - If the token at the current position i is <x>, then attends to position $i \ell$
 - Otherwise attends to <s>

$$\langle \mathbf{q}_i, \mathbf{k}_j \rangle = \eta \left(\langle \bar{\mathbf{p}}_i, \bar{\mathbf{p}}_{j+\ell} \rangle + \xi \langle \tilde{\mathbf{u}}_{\langle \bar{\mathbf{x}} \rangle}, \tilde{\mathbf{h}}_i \rangle \langle \bar{\mathbf{p}}_1, \bar{\mathbf{p}}_j \rangle \right)$$

- If $\vec{h}_i = \vec{u}_{<\mathrm{X}>}$, then the second term is zero
 - Determined only by the first term, maximized at $j = i \ell$
- Otherwise, determined by the second term for a large ξ
 - Maximized at j = 1

Implementing the first-layer attention

Attention chooser is a general building block

- Five heads: (<e>, 1), (<e>, 2), (<R>, 1), (<R>, 2), (<A>, 1)
- Value matrix reads, output matrix writes

Implementing the second-layer attention

Only requires one head

$$\mathbf{Q}^{(1)} = [\mathbf{I}_{d_{\mathsf{TE}}} \quad \mathbf{0}_{d_{\mathsf{TE}} \times d_{\mathsf{TE}}} \quad \mathbf{0}_{d_{\mathsf{TE}} \times d_{\mathsf{TE}}} \quad \mathbf{0}_{d_{\mathsf{TE}} \times d_{\mathsf{PE}}}] \in \mathbb{R}^{d_{\mathsf{TE}} \times d},$$

$$\mathbf{K}^{(1)} = [\tau \tilde{\mathbf{u}}_{<\mathsf{A}>} \otimes \tilde{\mathbf{u}}_{<\mathsf{R}>} \quad \tau \mathbf{I}_{d_{\mathsf{TE}}} \quad \mathbf{0}_{d_{\mathsf{TE}} \times d_{\mathsf{TE}}} \quad \mathbf{0}_{d_{\mathsf{TE}} \times d_{\mathsf{PE}}}] \in \mathbb{R}^{d_{\mathsf{TE}} \times d}$$

3. Experiments

Dataset: ProsQA

Figure credit to [1]

Dataset: ProsQA (symbolic version)

- We use a symbolic version of ProsQA
 - We train models from scratch since we change # of layers
 - Easier to observe and align with our theory

Dataset statistics

	#Problems	V	E	Sol. Len.
Train	14785	22.8	36.5	3.5
Val Test	257 419	22.7 22.7	36.3 36.0	3.5 3.5

Training Methods

```
Language CoT (training data)

[Question] [Step 1] [Step 2] [Step 3] ··· [Step N] [Answer]

[ ''']: sequence of tokens

[ ''']: sequence of tok
```

Figure credit to [1]

In our experiments, we only calculate the loss at the position of <eot>

Comparison of continuous and discrete CoT

- Dataset: a subset of ProsQA^[1], symbolic sequence, 3-4 steps
- Model: GPT2-style decoder
- Training: multi-stage training, stage i predicts i-th node in the optimal path using previous thoughts

 Overall results: 2-layer transformer with continuous CoT (Coconut) beats 12-layer transformer with discrete CoT (CoT*)

Layer 1 Attention Patterns

Layer 1 Attention Patterns

Layer 1 Attention Patterns

Visualization (Layer 2 attention)

For step c:

$$[t_c] = \frac{1}{\sqrt{|\mathcal{V}_c|}} \sum_{v \in \mathcal{V}_c} \vec{u}_v$$

- **Reachable node** (reachable from start node within c-th steps)
 - *Frontier node* (exactly *c*-th steps)
 - Optimal node (on the shortest path from the start node to the destination node)
- Non-reachable node
- The attention from the current thought to each edge (group)

	Step 1	Step 2	Step 3	Step 4
Not Reachable	0.04 ± 0.07	0.03 ± 0.09	0.08 ± 0.17	0.12 ± 0.20
Reachable	2.12 ± 1.07	$0.71 \pm \scriptstyle{0.92}$	$0.38 \pm \scriptstyle{0.72}$	$0.29\pm\!$ 0.66
–Frontier	2.12 ± 1.07	$1.00\pm\!\!0.96$	$0.67 {\scriptstyle\pm0.87}$	$0.61\pm\!$ 0.95
–Optimal	$2.54{\pm}1.03$	$1.72{\scriptstyle\pm1.13}$	$1.67 {\scriptstyle\pm1.20}$	$2.23{\pm}1.35$

Visualization (superposition)

• Inner products of the current thought and each node embedding

$$[t_c] = \frac{1}{\sqrt{|\mathcal{V}_c|}} \sum_{v \in \mathcal{V}_c} \vec{u}_v$$

- Superposition emerges during training without explicit supervision
 - Note that during training, the target token is always at the optimal path
- Superposition prefers to the optimal nodes
 - Theoretical construction: uniform weights in superposition
 - Experimental results: larger weights for the optimal node
 - Models might have heuristics on which branch is more promising

4. Conclusions

Discussions

- Continuous thoughts can be powerful but hard to control
 - E.g., superposition states can be a subset of tokens (with different weights)
 - It can emerge even if the training data only contain single discrete traces
- Requires a deeper understanding if we want to use it reliably
 - Mechanism for more general tasks
 - How superposition emerges during training and how to control it

Thanks!

