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1. Background



LLMs on reasoning tasks using CoTl

* LLMs are powerful in many reasoning tasks, especially with chain-of-thought (Col)
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Standard Prompting Chain-of-Thought Prompting
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Figure credit to [1] Figure credit to [2]

* LLMs still struggle with more complex reasoning tasks (e.g., longer reasoning steps)

* How to expand existing Col methods to solve more complex problems?

[1] Wei, Jason, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, FeiXia, Ed Chi, Quoc V. Le, and Denny Zhou. "Chain-of-thought prompting elicits reasoningin large language

models." Advances in neural information processing systems 35 (2022): 24824-24837.
[2] Zhou, Yang, Hongyi Liu, Zhuoming Chen, Yuandong Tian, and Beidi Chen. "GSM-Infinite: How Do Your LLMs Behave over Infinitely Increasing Context Length and Reasoning

Complexity?." arXiv preprintarXiv:2502.05252 (2025).



Existing methods (1

* Pause tokensl'], filler tokens [2]
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Figure credit to [1]
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[1] Goyal, Sachin, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh Nagarajan. "Think before you speak: Training language models with pause tokens."arXiv preprint
arXiv:2310.02226 (2023).
[2] Pfau, Jacob, William Merrill, and Samuel R. Bowman. "Let's think dot by dot: Hidden computation in transformer language models." arXiv preprintarXiv:2404.15758 (2024).



Existing methods (2)

* Implicit CoT!'! (gradually removing intermediate steps)

Explicit CoT Stage 0:

A 4

Implicit CoT Stage 6:

Stage 1:

Stage 2:
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Figure credit to [1]
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[1]1 Deng, Yuntian, Yejin Choi, and Stuart Shieber. "From explicit cot to implicit cot: Learning to internalize cot step by step." arXiv preprintarXiv:2405.14838 (2024).



Existing methods (3)

» Latent spacel’l (use discrete latent tokens as first several steps)
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[boLatent] = [eoLatent] Special delimiters that encode the start / end of the latent tokens

Z Discrete latent tokens

CoT N The n-th CoT textual tokens

Figure credit to [1]

[1] Su, DilJia, Hanlin Zhu, Yingchen Xu, Jiantao Jiao, Yuandong Tian, and Qinging Zheng. "Token Assorted: Mixing Latent and Text Tokens for Improved Language Model Reasoning." arXiv preprint
arXiv:2502.03275 (2025).



Chain of continuous thought

Chain-of-Thought (CoT) Chain of Thought (CoconuT)
output token X; Xip1  Xiy2 Xiyi [Answer] [Answer]
(sampling) |
last hidden state
input embedding
input token [Question] = X% = Xiy1 | Xig2 Xigj [Question] <bot> <eot>

Figure credit to [1]

* Continuous Col: directly uses the hidden state as the next input

* Outperforms discrete Cols in various reasoning tasks
* Especially problems with high branching factors/requires searching

* Lacks theoretical understanding of its power and mechanism

[11Hao, Shibo, Sainbayar Sukhbaatar, Dilia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. "Training large language models to reason in a continuous latent space." arXiv preprintarXiv:2412.06769 (2024).



Main results

* Construct a 2-layer transformer with Continuous Col that solves
directed graph reachability using O (n) steps (n: # of vertices)

* The best known result for constant-depth transformers with discrete Col
requires 0(n?) steps!

* Insights: Continuous thoughts maintain a “superposition” of
explored vertices, performing a parallel BFS

* Empirical study is aligned with theoretical construction
* Superposition representation emerges during training (no supervision)

[1] Merrill, William, and Ashish Sabharwal. "The expressive power of transformers with chain of thought." arXiv preprintarXiv:2310.07923 (2023).



2. Theoretical Results



Graph reachability

* Graph reachability: Given a directed graph G = (V, £), decide whether a node s canreach t
* Many real-world reasoning problem can be abstracted as a graph (e.g., knowledge graph)
* Many theoretical problems can be reduced to it (e.g., Turing machine halting problem)

Step 1

Step 1: vy orv, ?
(hard to decide which branch)

§ o

Step 1: v; and v, !
(explore both branches
simultaneously)

g=W,8

Search process



Preliminaries

* Voc = [V]: avocabulary of size IV
» For any token v € Voc, it has an embedding u, € R?

Discrete CoT Continuous CoT

sample: vy1 ~ SoftMax(WoTFy(h))

TFo(h) € R @ =
1

A

)

Transformer J [

t 1 1 Tt

U1 [ U3 Ut Vt+1 U1 [

A

TFy(h) € R4
Transformer J
V3 - v latent

h - h[t] - (hl,hz ..... ht) € RdXt ht—|—1 — u’Ut+1 h - h[t] - (hl,hg ..... ht) € RdXt ht_|_1 = TFB(h)



Transformers , o
MLP + layer normalization
i =y
[ Transformer ] :> Multi-head attention
Positional encoding

(¥ /

Adding positional encodings

hgo) < h; + PosEncodey, (), Vi€ [¢] —
for|=0to L —1do

h(+0:5) « K -+ ZhH;Bl Attng(l,h) (h(l)) | > multi-head attention layers
Attn

h(+D + LayerNorm (MLP,q) (h(+0-9)

MLP )
end for
MLP / FF layers & layer normalization




Attentions and MLPs

J q; < Qh;, k; < Kh;, v; << Vh;, Vielt

[ Multi-head attention _
S; < SOftMBX(((]fi, kl), ey (qu k3>), hé\ttn «~ 0 Z;:l Si,jvj

[ MLP J hMP « Wi conue—1(-- Wao (Wih;) -+ -)




Embedding space

d = 3dTE + dPE
A
( \
[ content 1 buffer1 1 buffer?2 : positional encoding ]
| | |
\ J \ J \ J \ )
Y Y Y Y
drg dtE dtE dpg

« We use content(u) to represent the first drg entries for a d-dim vector u
 Define buffer; (1) , buffer, (1) , and pos(u) similarly
e Use il = content(u) and & = pos(u) for convenience



Token embeddings and positional encodings

R |

 Fortoken embedding u,, only the content space are non-zero
» Define the (reduced) embedding matrix U = [, @iy, ..., fiy] € RETEXV
« Assume UTU =1 (i.e., token embeddings are orthonormal)

[ i i o |

 For positional encoding p;, only the position space are non-zero
* We use sinusoidal positional encodings _ _
* Forany positioni = 1andj € [dpg/2]

D2 1 P1
* Dizj—1 = cos(i-w!), Pip; =sin(i- w’) )\ @

| €

« where w = M~2/4PE (in practice, M = 10* for example)




Prompt format

Given two candidate destination nodes, decide which one can be reached

directed edge special edge token
\
[ ) I
<s> S1 tl <e> Sy tz <e> Sm tm <e>
source node target node
g /)
e

Description of the Graph



Prompt format

Given two candidate destination nodes, decide which one can be reached

question token reasoning token
<s> Graph Description <Q> <R> S

1 Co
candidate targets  start node

- /)
Y

Description of the task




Prompt format

Given two candidate destination nodes, decide which one can be reached

» Decoding

r Discrete Col

v, v, V3 eee <A> farget

<s> Graph Description Task Description <

Continuous Col

\ latent latent e e e <A>  target



Main theorem

Theorem (informal)

Secret Sauce: Superposition of the embeddings!



How does a single atth-MLP block work?

Copy contents to buffer spaces

buffer — X, “+” x4
content
X1 X2 X3 Xt-1 Xt
simplified 4
embedding )
Attend to several previous tokens
space

MLP as a

h= Z e

veVoc

B o z {1, > )i,

h/ — WzO'(Wlh) veVoc

= Uo(UTh) Eliminate noise

U = [Uq, Uy, ..., Uy] : the embedding matrix

Attention as an :

* thisisageneral component

* can have multiple buffers

* can move contents to different buffers

The role of each MLP layer:

« W, = UT: change to standard basis;

e o() =I{ - > ¢}: coordinate-wise filter;
* W, = U: change the basis back



First-layer attention

embedding
space

(buffer‘l A

positional
encoding

- J

[tc]

<A>

copy
Si
ti

Si tl <e>

P3i-1 P3i P3i+1
attend

Continuous thought at step ¢

Special answer token

<Q>

€1

P3m+3

. C1,Co
Co <R> r [tl] [tc] <A>
P3m+4 P3m+5 PT-1 Pt

J

MLP layers: removing low-attended embeddings



Second-layer attention (thought generation)

embedding
space

(buffer’l A

content

small attention if s; € V,

large attention

iijEVC
Si Sj
add if large attention
L tj o
<s> <e> <e> e T EC]

One-step expansion of V.

Superposition of all
nodes that can be
reached within c steps

=Y

vEV,

V. :setof all
nodes within



Continuous Col: Decoding as parallel BFS




Second-layer attention (final prediction)

1 R Reachable set from
[tC] — Z Uy

T~ 1 the starting point

embedding

space
(buffer1 h [tc]
_________ add

buffer 2 Cq1,Cz

content <s> <e> .. <Q> C1 Cy <R> r [t4] .. [tc] <A>
- /

“Measure” [t.] using ¢; and ¢,

The target c* that overlaps with reachable set will be picked and returned



Construction of the first-layer attention

* How do transformers implement copy?

* Naive methods: hard-coding many position pairs
* e.g., pos. 5 attends to pos. 4, pos. 8 attends to pos. 6
* Drawback: not flexible, vulnerable even to a one-position shift
* A possible solution: using relative positions
 E.g., pos.iattendsto pos. (i — ¥) for some fixed ¥
* Drawback: not every position needs to look £ positions back
* We propose a more flexible building block: attention chooser
* Fix a specialtoken <x>, and a positive integer ¢

* |f the token at the current position i is <x>, then attends to positioni — ¥
* Otherwise attends to <s> (attention sink)



Properties of sinusoidal positional encodings

: There exists R®) € RIPEXDPE st p;,, = RWp;, Vi

Pive | Di
. lcos(f cwl)  —sin(? - w’) lcos(i : a)j)] B lcos((i +£) - wl) R
sin(f- /) cos(£-w’) [[sin(i-w/)| |sin(@+¢) - w))
: There exists € > 0, s.t., (p;, p;) < % —¢cfori #j
Dj Di

. (ﬁi:ﬁj) = ZZZEl DikPj k
= Y9PE/2 cos(i - w*)cos(j - w*) + cos(i - w*)cos(j - wk)




Attention chooser

* A single attention head given (<x>, £) that implements:
* If the token at the current position i is <x>, then attends to positioni — ¢
* Otherwise attends to <s>

Q _ [ QdPExéTE OdPExszE IdPE ] K = OdpEXBdTE ’r]R(e)
gpl ® U<x> OdpE X 2dTE OdpE X dpg OdPE X 3dTE nIdPE
Ucz> = ZvEVoc\{<x>} u, € RTe
qi = Q(h; + p;) = [ -~ P _ ] nREp; NPi+¢
{(Ux>, hi)P1 ki = K(h; + p;) = nD; = npi

(qi, kj) =7 ((I_)ial_)j+£> +€(ﬁ<i>,fli)(f)1,pj))



Attention chooser (continued)

* A single attention head given (<x>, £) that implements:

* If the token at the current position i is <x>, then attends to positioni — ¢
* Otherwise attends to <s>

(a:,kj) =7 ((f’uf)ﬁe) +§(ﬁ<i>,flz‘>(l31,pj>)

* If h; = Uy, then the second term is zero
* Determined only by the first term, maximizedat j =i — ¥

* Otherwise, determined by the second term for a large ¢
* Maximizedat j =1



Implementing the first-layer attention

* Attention chooser is a general building block

Si [tc]
L > €1, 0
<s> S; t; <e> .. <Q> C1 Co <R> r [t1] ... [tc] <A>
P3i-1 P3i P3i+1 - P3m+3 P3m+4 P3r;+5 Pr-1  Pr
/J

* Five heads: (<e>, 1), (<e>, 2), (<R>,1), (<R>, 2), (<A>,1)
* Value matrix reads, output matrix writes



Implementing the second-layer attention

* Only requires one head

small attention if s; € V..

large attention

ifs; €V
S; Sj J ¢ €1, €2
t; t; <R> r [t4]
<s> <e> <e> e T EC]

d d
Q{l} :[IdTE l]ﬂiTE?‘i'ﬂiTE UdTEKdTE []d'TE:":"iPE] cR TEx »

1 ~ - drexd
K{ } :[Tu‘:ﬂ} @ U{R} TI-.’:ETE D-.’.ETEHFITE D“{TEK{‘EF‘E] E R TE



3. Experiments



Dataset: ProsQA

‘ Root node Question:

P . Target node Every grimpus is a yimpus. Every worpus is a jelpus. Every zhorpus
o / ,/ \ . Blitaciinods is a sterpus. Alex is a grimpus -+ Every lumps is a yumpus.
pus S i ot Question: Is Alex a gorpus or bompus?

/ / O root node
\ / Grandchild of CoT
— the root node .

: Ground Truth Solution

/ e -~ Alex is a lempus.

Alex is a grimpus.

Every grimpus is a rorpus.
Every rorpus is a bompus.
### Alex is a bompus

Every lempus is a scrompus.
Every scrompus is a yumpus.
Every yumpus is a rempus.
Every rempus is a gorpus.
##4# Alex is a gorpus x

-

Coconurt (k=1) (Hallucination)

<bot> [Thought] <eot> Coconut (k=2)
Every lempus is a scrompus.  <bot> [Thought] [Thought] <eot>

Every scrompus is a brimpus.  Every rorpus is a bompus.
### Alex is a brimpus € ### Alex is a bompus

(Wrong Target) (Correct Path)

Figure credit to [1]

[11Hao, Shibo, Sainbayar Sukhbaatar, DiJia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. "Training large language models to reason in a continuous latent space." arXiv preprint
arXiv:2412.06769 (2024).



Dataset: ProsQA (symbolic version)

* We use a symbolic version of ProsQA

* We train models from scratch since we change # of layers
* Easier to observe and align with our theory

<§> s§1 t; <e> s, t; <e> e Sm t;,, <e> <Q> ¢ ¢ <R> r

e Dataset statistics

#Problems |V| |E| Sol. Len.

Train 14785 22.8 36.5 3.5
Val 257 227 36.3 3.5
Test 419 227 36.0 3.5




Training Methods

Language CoT

=" [Question] [Step 1] [Step 2] [Step 3] - [Step N] [Answer] [Thought] : continuous thought
(training data)

[ --- ]: sequence of tokens
<--->: special token

Stage O [Question] <bot> <eot> [Step 1] [Step 2] :*- [Step N] [Answer .-+ : calculating loss

Stage 1 [Question] <bot> (A1ls[i=j1d} <eot> [Step 2] [Step 3] --- [Step N] [Answer
Stage 2

[Question] <bot> |REalelff={yidf (MNalelt=131d) <eot> [Step 3] -:- [Step N] [Answer]

Stage N (o=l lil s leied [ Thoughtl} [ ThoughtlB& [Thought] =1 e M -\a =14

Figure credit to [1]

* In our experiments, we only calculate the loss at the position of <eot>

[1] Hao, Shibo, Sainbayar Sukhbaatar, Dilia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. "Training large language models to reason in a continuous latent space." arXiv preprint
arXiv:2412.06769 (2024).



Comparison of continuous and discrete Col

* Dataset: a subset of ProsQAl'!, symbolic sequence, 3-4 steps
* Model: GPT2-style decoder

* Training: multi-stage training, stage i predicts i-th node in the
optimal path using previous thoughts

* Overall results: 2-layer transformer with 2 No CoT
continuous Col (Coconut) beats 12-layer ¢
transformer with discrete CoT (CoT*) 07

[1] Hao, Shibo, Sainbayar Sukhbaatar, Dilia Su, Xian Li, Zhiting Hu, Jason Weston, and Yuandong Tian. "Training large language models to reason in a continuous latent space." arXiv preprintarXiv:2412.06769 (2024).
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Layer 1
Attention Patterns
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Layer 1
Attention Patterns
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Visualization (Layer 2 attention)

* For step c: [t.] =
* Reachable node (reachable from start node within c-th steps)
* Frontier node (exactly c-th steps)
* Optimal node (on the shortest path from the start node to the destination node)

qu”

vEV,

* Non-reachable node

* The attention from the current thought to each edge (group)

Step 1 Step 2 Step 3 Step 4
Not Reachable 0.04+0.07 0.0340.09 0.0840.17 0.1240.20
Reachable 2.124.07 0.7140.92 0.3840.72 0.2940.66
—Frontier 2.12+4.07 1.0040.96 0.67+0.87 0.61+0.95
—Optimal 2.04+41.03 1.7241.13 1.67+1.20 2.2341.35




Visualization (superposition)

. 1 .
| d fth h h d h node embedd [t = —
nner products ot the current thought and each node e e IN te oA Uy
Clvev,
Continuous thought 1 Continuous thought 2 Continuous thought 3 Continuous thought 4
Mot Reachable (-0.28) Mot Reachable {-0.21) 700 1 Mot Reachable {-0.02) Mat Reachable {-0.14)
1000 - Reachable (3.62) 800 4 Reachable {1.50} Reachable {0.68}) Reachable (0.51)
Frontier (5.00) Frontier (2,52 600 < Frentier {1.87) 400 Frontier (2.06)
Optimal {6.50) Optimal (4.75) Optimal (6.19) Optimal (9.38)
800 A 500 -
600 1 200 4
600 400 1
4001 300 200
400 1
200 200 1
200 100 1001
0 T T T T 4] T T T T 8] T . T T 0 T T T T
=5 0 5 10 =5 i} 5 10 =5 0 5 10 =5 0 5 10

* Superposition emerges during training without explicit supervision
* Note that during training, the target token is always at the optimal path

 Superposition prefers to the optimal nodes
* Theoretical construction: uniform weights in superposition
* Experimental results: larger weights for the optimal node
* Models might have heuristics on which branch is more promising



4. Conclusions



Discussions

* Continuous thoughts can be powerful but hard to control

* E.g., superposition states can be a subset of tokens (with different
weights)

* |t can emerge even if the training data only contain single discrete traces

* Requires a deeper understanding if we want to use it reliably

* Mechanism for more general tasks
* How superposition emerges during training and how to control it
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